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Abstract

ZrQ,, derived from three zircon source minerals and many process variations, was physi-
cally and chemically analyzed. The impact of the ZrO, variations obtained was then
evaluated in both dry and wet blended lead zirconate-lead titanate, high drive type
piezoelectric compositions. Proper purification and blending of the ZrQO, was shown to
yield PZ-PT material with uniform low and high drive piezoelectric behavior. Single
precipitated ZrO, and dry blending were shown to be highly variable processes. Also,
solution ceramic approaches produced a higher density PZ-PT.

oSt

| Accession For
| NITS GRAM

! DLC TAB
Unaunounced
ification

[

By

ey

|
‘ _Distritution/
funilehility Codes

l‘ Availeund/or
iDist special

A




et b D OB W

-

“ :

Section

v

47602

ke At VR S A Dy

Table of Contents

INTRODUCTION
EXPERIMENTAL PROCEDURE

A. Reprecipitation of ZrQ, - XH;0
B. Coprecipitation of ZrQ, into PZ-PT
C. Chemical Analysis of Lead Zirconate Titanate

RESULTS AND DISCUSSION

A. Surface Area of ZrO,

B. Chemical Uniformity of Fired PZ-PT
C. Reprecipitated ZrQ, in PZ-PT

D. Coprecipitation of PZ-PT

SUMMARY AND CONCLUSIONS
ACKNOWLEDGEMENTS
v
P e AR INAGNBAREN R g L e R e S e S

Page

O-JOv N

11

12
15
19
26

34




List of lllustrations

Figure

1 Flow diagram for ZrO, production.

2 Typical garticle size distribution curve for ZrO, obtained by MSA
approach.

3 A ZrO, surface area as a function on calcination temperature.

4 Influence of surface area on the dry pressed density of ZrO;.

5 Influence of ZrO, surface area on the dry pressed and final PZ-PT
densities.

6 The impact of PZ-PT blending procedure on final density.

7 Zr/Ti ratio versus frequency constant for PZ-PT produced from

various ZrO,.

vi

Page

12
14
16

17
27




List of Tables
Table Page
1 Batch additions for reprecipitation of zirconium hydroxide. 7
2 Batch formulations using chemical solutions of zirconium. 9
3 Within batch chemical uniformity for six samples of wet blended 10
PZ-PT using Florida precipitated ZrO,.
4 Surface area of ZrQ, in square meters per gram. 13
5 X-ray diffraction results on final PZ-PT compositions. 18
6 Chemical impurities in ZrO, powder. 21
7 Physical properties of ZrO, powders. 21
8 Chemical composition of fired PZ-PT. 22
9 Density and unpoled dielectric constant of PZ-PT. 23
10 Poled dielectric constant of PZ-PT. 23
11 Piezoelectric radial coupling coefficient of PZ-PT. 24
12 Piezoelectric frequency constant of PZ-PT. 24
13 Mechanical quality factor of PZ-PT. 25
14 High drive properties of PZ-PT. 25
15 Properties of TNBZ/TNBT derived ZrO,TiO, powders. 30
16 g:tecx;:ég?l uniformity of TNBZ/TNBT coprecipitated PZ-PT 30
17 Fired piezoelectric properties of PZ-PT prepared from 31
coprecipitated ZrQ,/Ti0,.

47602

vii




I. Introduction

Most of the Navy’s active and passive transducers contain lead zirconate-lead titanate
(PZ-PT) ceramic elements. These materials have been used extensively in transducers
because they are capable of operating at both low and high frequencies, high stress
amplitudes, high powers and large bandwidths at high efficiencies. Where these proper-
ties are required, PZ-PT ceramics are the most cost-effective approach known. However,
there are still certain limitations in the uniformity of performance, related primarily to
the variability of the source of ZrO, used. This program was initiated to study the source
of variability in ZrQ, and its impact on the piezoelectric performance of a typical high
drive projector type PZ-PT composition. The impact of ZrO, derived from various zircon
sources, in both a dry and wet blend PZ-PT batching approach, was evaluated.

v
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Il. Experimental Procedure

Honeywell’s approach to this study was based on a well-established capability for pro-

ducing piezoelectric ceramic materials used in various Navy and DoD programs over the

past 20 years. Two approaches, described in the first technical report(1) on this program,

were used to generate ZrQ, for this study. Initially, zircon (ZrQO, - SiO,) was obtained
from three sources and processed into ZrQ, by the standard commercial process used at
the Harshaw Chemical Company* for piezoelectric grade ZrQ,. In the second approach,
the standard Honeywell alk-oxide process, which uses tetra-N-butyl zirconate (TNBZ),
was used to produce ZrQ,. The ZrO, produced by each of these processes was chemically
and physically characterized, and then its impact on the behavior and properties of
PZ-PT was evaluated as previously described(1). This section updates the previous work
and describes new approaches employed in the contract’s final period.

The chemical reactions involved in the standard approach used by Harshaw to produce
Zr0, from ziron, described in the first technical report,(l) contained several errors. The
correct version of these reactions is shown in Equations 1 through 8.

Zr0, - Si0, + 4NaOH (Typical) - Na,Si0, + Na,ZrO, + 2H,0 (1)
ZrOoCl,; + 0.6 H;SO, - ZrO - 0.6 SO, - x OH + 2 HCI (3)

First Precipitation

Zr0 - 0.6 SO, - x OH + 1.2 NH, OH + H,0 - ZrQ, - x H,0 + 0.6 (NH,), SO, (4)
ZrQ, - x H,0 + HC] + H;0 = 2 ZrO OHCI + H,0 (5)
ZrOOHCI + 0.6 H,O - ZrO - 0.6 SO, - x OH + HCl (6)
Second Precipitation
ZrQ - 06 SO, - x OH + 1.2 NH, OH + H,0 -+ Zr0O, - x H,0 + 0.6 (NH,), SO, ¥)]
Calcine
Zro, ° X HQO + HEAT - ZrOg + H’O (8)

* Harshaw Chemical Company, Division of Gulf Oil Company, Cleveland, Ohio 44106
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The exact details of the Harshaw process were not made available; however, since their
process is based on the caustic fusion process, it is likely that it proceeds approximately
as shown in Figure 1. This process has been described(2) as follows:

“Caustic soda has been found to be a suitable agent for the decomposition of zircon sand
(zirconium silicate). By using an optimum ratio of 1.1 parts by weight of caustic soda to 1
part of unground zircon sand and a furnace temperature of 650°C, about 90% of the
zircon reacts to form sodium zirconate, sodium silicate and a small amount of sodium
silicozirconate. This reaction takes between 1 and 2 hours to reach completion and can
be carried out in a container fabricated from mild-steel plate. The resulting product is a
light-colored granular material from which the water-soluble sodium silicates can be
easily removed by a hot-water leaching operation. In practice, this granular product
from the caustic fusion is first agitated with hot water in a steel tank and then fed direct-
ly to a horizontal solid-bowl continuous centrifuge, where an excellent and convenient
separation of solids from liquids can be made. The water-insoluble zirconates are then
dissolved in hot hydrochloric acid. Zirconyl chloride is crystallized from this solution at
250°C to remove iron, titanium, aluminum, some silica and other soluble impurities.
The crystalline zirconyl chloride is separated from its mother liquor on a perforated
basket centrifuge which gives a very dry crystal. These crystais are put into a water
solution, which is clarified in order to remove most of the residual silica. The resulting
pure zirconyl chloride solution may be processed further to give high-purity zirconium
(or zirconyl) compounds, such as the oxide, fluoride, nitrate, sulfate and hydroxide.”

An alternate approach, known as carbon arc fusion process, is also shown in Figure 1.
The zirconium carbonitride produced is chlorinated to produce zirconium tetra chloride
which is then processed into ZrO,. It has been stated(2) that this process produces less
pure material than the caustic fusion process.

The physical characteristics of the ZrQ, powders produced during the last portion of this
contract were studied in more detail by comparing the surface area obtained versus the
materials’ agglomerated particle size. The surface area was measured with a Micromer-
itics Model 2200 Analyzer using nitrogen gas absorption.

The agglomerated particle size was measured by the MSA centrifuge sedimentation ap-
proach(3). A typical curve is shown in Figure 2. The dispersion approach used consisted
of mixing 0.7 gm of ZrO, powder with one drop of Triton X-100, Dravan-C, and ethyl

T L T
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Figure 1. Flow diagram for ZrO, production.
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Figure 2. Typical particle size distribution curve for ZrO, obtained
by MSA approach.

hexanol and then blending this mixture in a 30 percent acetone-70 percent H,O solution.
This, in turn, was added to the sedimentation liquid (water) in the MSA equipment.

t was assumed that the average particle size obtained was that of strong agglomerated
particles of ZrQ,, which probably approaches the particle diameter of the ZrQ, - xH,0
particle from which the ZrQ, was derived. This appears likely because basic zirconium

sulfate particles are typically about 15 um and the first stage precipitate particles were
measured at 8-10 pm(1),

It was also desirable to determine if further improvements in the ZrO, produced for
PZ-PT could be obtained with additional manipulations of the precipitstion process.

A. REPRECIPITATION OF ZrO, - XH,0

Since ZrO,- x H,0 was available from the six lots of Harshaw material produced from
three zircon sources(1) each of these was reprecipitated by the following process.

Both of the first precipitate and second precipitate obtained as indicated in Equations 4
and 7 were dissolved in HCI according to Equation 5 to produce a solution of ZrOOHCI
in water. This was accomplished by heating 2000 cc of 50 percent HCl/water solution and
slowly adding 1000 gm of precipitate to the solution while mixing. The solution was
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boiled at 105°C for about 10 minutes to produce a straw-yellow clear solution. This solu-
tion was allowed to cool and stand several days during which time a slight amount of
sediment settled to the bottom of the breaker. About 90 percent of the ZrOOHCI solution
was carefully decantered from the beaker and the remaining 10 percent with sediment
was discarded. It was assumed that most of the non-acid soluble impurities were re-
moved by this process.

Next, ammonium hydroxide was added in 10 percent excess of the amount required to

satisfy the amount of ZrQ, present in the solution (400 to 600 cc). Precipitation of ZrQ, -
xH;O occurred rapidly. The precipitate was allowed to settle for a day; about 25 percent
of the liquid remaining was decanted and then 2000 cc of water were added and de-

canted. This rinsing process was repeated seven times to produce a pH of about 7 in the

solution. The precipitated material was dried at 150°C for 24 hours and then calcined at

900°C for 3 hours.

The first set of three batches of ZrQ, - xH,0 was prepared from the first stage precipi-
tates of material derived from Florida, Georgia and Australia zircon sources, as de-
scribed above.

The second set of three was processed as above except that after the ZrOO0HCI selution
was boiled, an additional 2000 ml of water was added to the solution and allowed to
settle 2 days.

The third set of three was produced from the Harshaw double precipitate. Since the
double precipitates contained more ZrQ, (less loss on ignition), 4500 grams of 60 percent
HCI1 40 percent water were mixed with 750 grams of precipitate. The remainder of the
process was the same as the second set except 2000 to 2200 ml of NH, (OH) was required

to bring the precipitate to a neutral state. In the fourth and fifth sets of single and double
precipitates, respectively, the ratio of HCl to ZrQO, in each batch of ZrO, was held con-

stant. The weight of ZrO, present was based upon its 1200°C loss on ignition. The exact
batch additions are given in Table 1. This table also shows the amount of NH, (OH) re-
quired to bring each batch to a neutral condition,

An improvement was also found in the way the amonium hydroxide was added. The first

90 percent of the NH,OH was added quickly but steadily to the solution during contin-
uous mixing. After about 95 was added, the ZrQ, became a coarse mud and more
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Table 1. Batch additions for reprecipitation of zirconium hydroxide.

o o Tt FS4 GS4 AS4 FD5 GD5 ADS
2 2 Florida Georgia Australia Florida Georgia Australia
Precipitate Single Single Single Double Double Double
HC1l in ml 2480 1980 1980 3174 2768 3000
H20 in ml 3870 3168 3168 4974 4430 4800
Based on LOI of 31.9 44 .4 44 .4 10.8 22.2 15.7
Gms Zroz in 511 417 417 669 584 632
750 gm Precip
NH4 (OH) 1650 1200 1300 1850 1650 1850

NH,OH did not mix into the solution evenly. When the mixture became a coarse mud,
NH,OH was slowly added and mixed thoroughly before addition of more NH,OH. When
this approach was used, the material went from a coarse to a creamy mixture and the PH
was readily controlled.

Each reprecipitated lot of zirconium hydroxide was calcined at 900°C for 3 hours. The 15
batches of ZrO, processed were physically and chemically evaluated and were wet

blended into the standard PZ-PT batch formulation given below and described pre-
viously.(1)
Pbo. 94 Sfo.oo (Zro.u Tio.u) 03 + 0.05 Wt % Fe, O,

B. COPRECIPITATION OF ZrO, INTO PX-PT

In the first part of this program one batch of pure ZrQ, and four batches with 0.02 to 0.36
percent of TiO, were prepared by coprecipitation from tetra N-butyl zirconate and
titanate (TNBZ and TNBT).(1) However, the TNBZ used had an unusually high
amount of silicon, iron and alumina. This work was repeated with a new lot of TNBZ.
Three batches were made containing 0.00, 0.10 and 0.40 percent TiO, and two batches
containing all of the Zr/Ti of the batch. In this process 800 gms of TNBZ/TNBT and 1400
gm of isopropyl alcohol were mixed together and then premixed water/acetic acid solu-
tion (5000 gm/300 cc) was slowly added to precipitate zirconium hydroxide. This mix was
dried at 100°C and crushed and calcined at 500°C for 12 hours.
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These materials were physically and chemically characterized and then processed by the
wet blending method into the standard PZ-PT batch as was done previously(1). A batch-
ing error was made in which the TiO, added through the TNBT was not compensated in
the four batches with TNBT. Therefore, a second group of five batches of PZ-PT was
produced and eveluated.

Three other approaches were evaluated to determine if more uniform PZ-PT batches
could be produced in a state where all the ingredients were insolution prior to precipita-
tion of the ZrQ,.

A stabilized ammonium zirconium carbonate (Bacote 20) and a zirconium acetate solu-
tion were obtained from Magnesium Elektron*. The loss on ignition (LOI) of these two
solutions after heating to 1000°C for 1 hour was 79.93 and 77.92 percent, respectively. A
second LO! indicated 79.95 and 77.76 percent, respectively.

Based on these results, two standard PZ-PT batches, Table 2, were prepared in a high
intensity Waring blender. Each ingredient was added in the order given and mixed about
2 minutes before adding the next ingredient. After addition of the PbO and 10 minutes of
mixing, the solution was poured into trays, dried at 190°C for 3 days, and calcined at
860°C for 5 hours. The Bacote 20 based material contained a black core that indicated
incomplete oxidization of the carbon from the decomposed acetate. Therefore, both
batches were crushed and recalcined at 800°C for 5 hours. This second treatment ap-
peared to completely oxidize all the carbon in both materials.

In the next approach, material from either the Harshaw Florida first or second precipi-
tate was dissolved in a boiling HCl/water solution as described earlier. A 250 gm batch of
PZ-PT (standard composition) was prepared with 411 ml of ZrOOHCI solution (assayed
previously to yield 50.84 gm of ZrQ,). An additional 100 cc of HCI and 200 cc of water
were added to the ZrOOHCI solution and then 6.91 gm of strontium carbonate, 0.125 gm
of Fe,0, and 29.37 gm of TiO, were added and mixed thoroughly in the order given. All of
these appeared to go into solution quite well. Before adding 163.32 gm of PbO, an addi-
tional 300 cc of HCI and 600 cc of water were added. Then the PbO was slowly added,
and heated to 105°C to attempt to get all the lead oxide in solution. However, very little
of the PbO appeared to be dissolved. Urea was dissolved in water and added in an at-

* Magnesium Elektron Inc., Star Route A, Box 202-1, Flemington, N.J. 08822
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Table 2. Batch formulations using chemical solutions of zirconium.

Amount Added
H20 (cc) 590 550 1250
Zirconium Acetate (cc) 916.6
Bacote 20 (cc) 1012.6
SrCO3 (gm) 27.68 27.68 6.91
Fe203 (gm) 0.50 0.50 0.125
TiO2 (gm) 117.50 117.50 29.37
PbO (gm) 654.67 654.67 163.32
HCl (cc) 400
Zr OOHC1l Solution (cc) 411
Urea (gm) 650
NH4 (OH) (gm) i 200

tempt to coprecipitate all of the ingredients. A total of 650 gm of urea and 450 cc of water
were added with no apparent precipitation. Then 200 gm of ammonium hydroxide were
added to achieve complete precipitation. The resulting mixture was dried at 120°C and
calcined at 700°C for 5 hours.

While these three calcined batches appeared to be completely decomposed, they were
extremely hard. No further work was done with this approach.

C. CHEMICAL ANALYSIS OF LEAD ZIRCONATE TITANATE

X-ray fluorescence was used to determine the amount of PbO, Sr0, TiO, and ZrO; pre-
sent in fired disc of lead zirconate-lead titanate. A Diano XRD 410 unit was used to es-
tablish the standards and perform all subsequent dnalysis. A mask with an opening of
0.68 inch in diameter was placed over all samples. Standard curves were established
from 10 samples where Pb was varied from 53.38 to 63.39 percent, Sr from 0.27 to 5.80, Ti
from 4.71 to 7.40 and Zr from 14.10 to 20.56. All samples tested were fired, ground flat
and had a diameter and thickness of 0.85 and 0.10 inches, respectively.




The sensitivity of this approach was evaluated by measuring six different samples pre-
pared from the same batch of PZ-PT. The results obtained, after converting to an oxide
basis, are shown in Table 3. A standard deviation of 0.4, 0.2, 0.3 and 0.02 was obtained
for PbO, ZrO,, TiO, and SrO, respectively. This table also indicates that the approach
tends to give slightly high (1.0 percent) results for PbO, while the other data are slightly
lower than the theoretical compounded batch.

Table 3. Within batch chemical uniformity for six samples of
wet blended PZ-PT using Florida precipitated ZrO,.

S/N % PbO | % ZrO2 % TiO2 % SrO
2 66.30 19.90 11.95 1.85
4 66.15 20.30 11.75 1.80
8 66,95 19.86 11.41 1.78
9 66.65 19.97 11.57 1.80

10 66.87 19.99 11.34 1.80

11 65.94 20.40 11.87 1.79
X 66.48 20.07 11.65 1.80
o 0.41 0.22 0.25 0.02

THEORETICAL | 65.46 20.38 11.72 1.94

47602
10

e gy v oy IR




Ill. Results and Discussion

In the first part of this study(1) it was shown that good high drive PZT could be fabri-
cated from ZrO, whether produced from Florida, Georgia or Australia beneficiated
zircon sand. These sands varied significantly in their physical particle size and chemical
purity, but an alkali fusion, double precipitate process produced ZrQ, with adequate
chemical purity and essentially the same ultimate particle size. Such fully processed
materials also produced PZ-PT with uniform piezoelectric properties at both low and
high field driving conditions.

ZrQ, derived from only the first precipitate material proved to be very dependent upon
the zircon source and calcination temperature. These ZrO, materials contained more
silica, calcia and titania impurities which appeared to act as media for bonding small
(0.05 um) crystallites into larger (10.0 um) agglomerates. When such ZrO, was used to
produce PZ-PT, these large agglomerates apparently caused incomplete blending and
densification of the PZ-PT and extensive variability in the piezoelectric behavior of the
material produced.

It was also shown that the dry blending approach for producing PZ-PT from fully
processed ZrO, is more difficult to control than the wet blending mixing approach. It is
incorrect to assume that poorly blended materials can be calcined and then wet ground
to achieve satisfactory PZ-PT piezoelectric material. For instance, all nine of the dry
blended compositions produced had fired densities of 6.96 to 7.47 gm/cc as opposed to
7.49 to 7.52 gm/cc for the same ZrO, wet blended PZ-PT compositions. Also, the piezo-
electric coupling coefficient was 13 to 51 percent lower than similar wet blended
material.

While the differences between the single and double precipitated ZrQ, was attributed to
the higher silica content and higher average particle size of the single precipitate ZrQ,,
information on the surface area of the ZrO, was not available at that time. Therefore, the
second portion of this effort was concerned with (1) a further analysis of the differences
in the various ZrQ, produced and (2) improvements in the ZrQ, and PZ-PT by addi-
tional chemical processing.

47602
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A. SURFACE AREA OF ZrO,

Figure 3 and Table 4 give the surface area of the ZrO, derived from various hydrates,
sources of zircon sand and calcination temperatures. The TNBZ derived ZrO, produced
at the Honeywell Ceramics Center and calcined at 500°C had surface areas of 47 to
56 square meters per gram, which was about the same as that produced by calcining
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Figure 3. ZrO, surtace area as a function on caicination temperature.
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Table 4. Surface area of ZrO, in square meters per gram.

Calcination Micro- Florida [ Georgia | Australia
Tempsgature Pulverized| Zircon Zircon Zircon
First 600 Yes 50.7 48.9 63.4
Precipitate 900 No 17.5
900 Yes 27.3 25.7 29.4
1200 No 1.66 1.19 0.57
1200 Yes 1.79 1.47 0.98
1320 No 0.74 0.79 0.86
1320 Yes 1.03 0.84 0.83
Second 600 Yes 51.0 38.8 37.6
Precipitate 900 No 11.3
Yes 15.7 16.1 15.7
1200 No 2.44 2.33 2.72
Yes 4.62 2.59
Harshaw Calcine Yes 23.0 25.0 21.5
Honeywell
2168 500 Yes 47.2
2169 500 Yes 54.0
2170 500 Yes 56.2
2171 500 Yes 45.7
2172 500 Yes 53.2

Harshaw’s first stage zirconium hydrate at 600°C, but generally higher than the 600°C
calcine second stage hydrate. It was shown previously(l) that the crystallites produced,
after decomposition of the initial hydrate, are about 0.008 to 0.010 um in size.

As the calcination temperature was increased, grain growth increased and surface area
decreased, as shown in Figure 3. At the lower temperatures, ZrQ, from the first stage
precipitates generally had higher surface areas than the ZrQ, from the second stage pre-
cipitates although crystalline sizes obtained were between 0.020 and 0.040 um. This sug-
gests that the purer double precipitates have more interfacial contact areas that are
physically stronger than the single precipitates. The assumption is partially verified by
the fact that the surface area of unmicronized ZrO, derived from Florida zircon was 17.5
and 11.3 M%gm for the single and double precipitates, respectively, as opposed to 27.3
and 15.7 M2/gm for the micronized ZrQ,. Less new surface area was generated for the
double precipitated ZrO,. At 1200°C, the surface area of the first stage ZrO, produced
was slightly less than the second stage ZrO, (0.57-1.66 versus 2.33-2.72 M?/gm).
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The dry pressed density (after pressing at 2900 pei) of each type of ZrQ, produced was
also plotted in Figure 4 as a fuiction of surface area of original ZrO, powder. The low sur-
face area materials pressed to about 3.0-3.3 gm/cc, while the materials calcined below
1000°C produced pressed densities of 1.3-1.6 gm/cc. There appeared to be a slight
dependency upon the purity difference between the first and second stage precipitates. A
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Figure 4. Influence of surface area on the dry pressed density of ZrO,.
47602

14




oy

-4

>

-y N e —

more dramatic difference is noted for the very impure TNBZ derived ZrQO, which pressed
to 1.8-1.9 gm/cc.

After the various ZrO, materials were batched and processed into the standard PZ-PT
formulation, the dry pressed and fired density of each batch was determined and plotted
as a function of the surface area of the ZrO, used. These data are presented in Figure 5.
Both the dry pressed and fired density data show that the double precipitated ZrO,
produce superior material than the more impure ZrO, obtained from the single, first
stage precipitate ZrQ, or impure lot of Tetra N-butyl zirconate. It was somewhat sur-
prising to see that the surface area and crystalline size of the ZrO, produced from double
precipitated materials had only a very minor influence on both fired and unfired density.
The wet blend process may be capable of some grinding of the larger crystallites, but it is
more probable that the cleaner grain boundaries promote grain growth and densification
more readily than in the more impure materials.

The trend of higher calcination temperatures to yield higher fired PZ-PT densities in the
first stage, single precipitated ZrQ, is also apparent. The fact that one 1200°C calcined
ZrO, obtained from single precipitated Georgia zircon reached a fired density of 7.502
may relate to the fact that this zircon sand is finer and purer than the other two sources.

The impact of ZrO, surface area used to produce PZ-PT by the dry blending method is
much more striking. The fired density of PZ-PT produced from double precipitated ZrO,
by this blending method is compared in Figure 6 to that produced by the wet blending
method. When the finer, fluffy, high surface area ZrO, was dry blended into a batch, the
PZ-PT produced had fired densities of only 6.95-7.15 gm/cc, whereas the coarse, 2-4 M?/
gm surface area type of ZrQO, produced PZ-PT with a 7.42-7.44 gm/cc density.

B. CHEMICAL UNIFORMITY OF FIRED PZ-PT

Use of the x-ray fluoresence technique described in Section II was a simple approach to
obtain quantitative information on the chemical uniformity of the batches produced
from various ZrQO, powders and by the wet and dry blended processes. Table 5 gives the
results obtained as a function of the ZrO; calcination temperature and zircon source.
Theoretically, all compositions should have been 65.46 percent PbO, 20.38 percent ZrQ,,
11.72 percent TiO, and 1.94 percent SrO with the Zr/Ti ratio of 0.53/0.47.
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These data show the presence of a consistently higher amount of PbO than the theoreti-
cal composition and the presence of lower SrO and Zr/Ti ratio. These results might
indicate the need for a better set of standards; however, the variability of the SrO and
Zr/Ti ratio suggests that real deviations in the chemical composition do exist in these
batches. This was confirmed by analyzing the impact of Zr/Ti ratio on frequency
constant. As the Zr/Ti ratio increased above 53/47, the frequency constant dropped
significantly, whereas values less than 526/474 caused the frequency constant to drop.

It was also interesting to note that at any given ZrO, calcination temperature wet
blended compositions contained less variance in the SrO present than those of similar
dry blended compositions. For instance, the wet blended single stage or double stage
ZrO, materials produced 21 PZ-PT batches with 1.78 to 1.87 percent SrO, whereas the
nine dry blended batches varied from 1.75 to 1.96 percent SrO.

Such Zr/Ti ratio data as given in Table 5 will be used to help understand the piezo-
electric properties obtained for the various PZ-PT batch produced in this study.

C. REPRECIPITATED ZrO, IN PZ-PT

This portion of the program examined the impact of additional reprecipitation processes
for ZrO, and their influence on the fired properties of PZ-PT. Five lots of ZrO, from
either first or second stage precipitate from each source of zircon (Florida, Georgia and
Australia) were prepared. The process of redissolving the first or second stage zirconium
hydroxide precipitate pulp with hot HCl and then reprecipitating with ammonium
hydroxide was discussed in Section II.

It was assumed that the average particle size obtained was that of agglomerated par-
ticles of ZrO, or possibly the particle diameter of the zirconium hydroxide from which
the ZrO, was derived. This appears likely because basic zirconium sulfate particles are
typically about 15 um and the first stage precipitate particles were measured at
8-10 um(l). The advantage of the double precipitation process appears to be to break up
these agglomerates to yield 1 to 3 um particles(l).

It was therefore desirable to determine if further improvements in the ZrQ, produced for
l PZ-PT could be obtained with additional replications of the precipitation process.
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Tables 6 aad 7 give the chemical and physical property data obtained for each of the
three reprocessed lots produced from the first stage precipitate calcined at 900°C, along
with the data obtained previously(l) for the direct calcination of this material. Simi-
larly, the two reprocessed lots of second stage precipitate are compared to the standard
Harshaw calcine and the direct calcination of the double precipitate.

Table 6 indicates that our reprocessing did not improve the chemical purity over that
achieved by Harshaw in their process. In fact, the first two lots of reprocessed first pre-
cipitate appear to have been contaminated by silica. The silica may have come from the
pyrex glass processing ware or chemicals used; however, if this was true, it should have
also occurred in the reprocessed double precipitate. Since this did not occur, the high
SiO, values reported are expected to be poor analytical data.

Table 7 gives the data obtained on ZrO, particle size, surface area and bulk density. All
of the reprocessed ZrQ, generally had smaller agglomerates but lower surface areas than
those calcined materials from which they were derived. This was particularly true for the
reprocessed Lot No. 4 and 5 materials believed to be our best approach.

After each reprocessed ZrQ, material was wet blended and processed into our standard
PZ-PT formulation, data was obtained on the chemical, physical and electrical proper-
ties of each batch. These data are reported in Tables 8 through 14 and are compared to
similar wet and dry blended ZrO, formulated PZ-PT batches. Table 8 gives the chemical
composition of the fired PZ-PT obtained by the x-ray fluorescence approach. The results
are similar to those discussed above—consistently high PbO and low SrO. The ratio of
zirconium to titanium is again expected to be most useful in understanding the piezo-
electric data; therefore, these results are repeated in Tables 9 through 14.

Table 9 gives the dry pressed and fired density as well as the unpoled dielectric constant
of each PZ-PT batch produced. The dry pressed density of each batch containing re-
processed ZrQ, was consistently lower than its source ZrQ, material. Similarly, the fired
density was consistently higher. Densities of above 7.4 gm/cc and as high as 7.57 gm/cc
were obtained from the first stage precipitated ZrO, as opposed to only 6.9 gm/cc for
PZ-PT batches prepared from ZrO, from the original precipitate. Densities of 7.53-
7.59 gm/cc were also obtained for PZ-PT produced from reprocessed double precipitated
ZrO, as opposed to 7.5 gm/cc for the original ZrO,. The unpoled dielectric constant was
generally higher with the higher densities obtained, although the actual chemical
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! composition may have had some impact on some of the PZ-PT compositions obtained
' from ZrQ, generated from reprocessed double precipitate.

The poled dielectric constant and aging rate of each PZ-PT batch compounded from the
various types of ZrO, are given in Table 10. The increase in dielectric constant was more
) dramatic in those batches of PZ-PT compounded from reprecipitated ZrQ, which
| originated from the first stage zirconium hydroxide. This was caused by the significant
improvement in density with these materials. The aging rate was also significantly
higher because these materials were more thoroughly polarized. Improvements obtained

i in PZ-PT from reprocessed ZrQ, derived from double precipitated zirconium hydroxide

: were more variable and dependent upon not only the fired density obtained but the

3 specific Zr/Ti ratio and composition obtained.

’ Data on the piezoelectric radial coupling coefficient is given in Table 11. In general, the
1 coupling coefficient was lower than that obtained in the PZ-PT produced from the re-
|

‘ precipitated ZrQO, materials. It is not clear why this occurred. Possibly, the more effec-
i tive blending obtained with the reprocessed materials and higher densities shifts the
‘ point at which the Zr/Ti ratio must be optimized for maximum coupling coefficient.
Aging rate again was highest for compositions with higher amounts of rhombohedral
3 phase (higher Zr/Ti ratio) PZ-PT.

Similar conclusions can also be drawn from the data shown in Tables 12 through 14 for
frequency constant, mechanical quality factor and the percent increase in capacitance
and dissipation factor at high driving fields. For instance, Figure 7 shows the frequency
constant as a function of Zr/Ti ratio. PZ-PT produced from ZrQO,, which gave fired
densities of 7.45 to 7.59 gm/cc and a Zr/Ti ratio of 0.52/0.48 to 0.53/0.47, had a frequency
constant of 2220 to 2380 hertz-meters. Lower amounts of ZrQO, produced slightly higher
frequency constants, while higher amounts of ZrO, produced significantly lower fre-
quency constants. Lower densities also tended to yield PZ-PT with lower frequency
constants. These results are consistent with those normally associated with PZ-PT
compositions. The aging rate for each property was also consistent with the composition
and extent of polarization obtained.

D. COPRECIPITATION OF PZ-PT

It was shown above that the ZrO, particle and agglomerate size and the uniform distri
bution of ZrQ, in the PZ-PT are important factors in controlling the properties of PZ-PT
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FREQUENCY CONSTANT (HERTZ-METERS)

2500 ‘\
2400
OH—
7.a2 IR
LT8O 1 a— FIRED DENSITY IN. GM. (C
LOT NO 2
LOT kO 4
2300 4 900°C-S£ COND
- —0 1.42
PRECIPITATE
751 DRY BLENDED
751 .
7.51 D_?o 7.50
900°C-SECOND 7. HARSHAW
PRECIPITATE CALINE
WET BLENDED 7.8%
2200 1
6.88
o]
5.66
2100
] R0
© 2RO, FROM FLORIDA ZIRCON WET BLENDED 6.86
0 2RO, FROM GEORGIA ZIRCON
£\ 2RO, FROM AUSTRIALIA ZIRCON
2000 T T T T T T T R
512/488 516/484 520/480 524/476 528/472 532/468 536/462 5407460 544/456

ZR/TI RATIO

Figure 7. Zr/Ti ratio versus frequency constant for PZ-PT produced
from various ZrQ,.

piezoelectric ceramic. The generation of PZ-PT from chemical solutions should avoid
both of these problems by simultaneous precipitation of ZrQO,, TiO,, SrO and iron oxide.
Such an approach would provide mixing on a molecular scale, and the particle size of the
solid solution compounds of these materials would probably not be important in the
early stages of processing. It should also produce more uniform fired behavior in the
PZ-PT produced. Since PbO has a high mobility during the calcination process, co-
precipitation of PbO in the batch may not be necessary.

Morgan(4) recently gave an excellent review of the basic approach of chemical proces-
sing of ceramics and points out, “It is often easier to change the starting powder than
embark upon prolonged studies of why a particular source material behaves as it does.”
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He also points to a common ceramicist’s myth that liquid chemical techniques for
powders are expensive and not easily adaptable to the large scale ceramic processes. The
irony of this situation is that the TiO, used in PZ-PT has been prepared by liquid chemi-
cal techniques in combination with barium and other pigments for years in the paint
industry. Also, Zr is in chemical solution very early in the process for producing pure
Zr0,.

Several groups have studied the use of chemical solution processes in order to obtain
more commercially acceptable or a superior optical quality PZ-PT material. Wright
coordinated an extensive effort at the Canadian Department of Mines in the early
1960's(®) to produce PZ-PT via the process of mixing solutions of Pb(NO,);, Zr(NO,),
and Ti(NO,), and then precipitation with (NH,),CO,; and NH,OH, ammonium gas or
H.C,0, (oxcilic acid). However, they experienced difficulties in producing fine, friable
calcined material suitable for further ceramic processing and were concerned over the
acidic nature of the nitrates evolved during calcining.

Mulder(6) has shown that Ti, Zr, Pb, and other compounds can be dissolved with citric
acid and then processed into PZ-PT. This was accomplished by dissolving purified
hydroxide with ammonia and citric acid. Unfortunately, Ba and Sr form insoluble
citrates and precipitate too rapidly to use in this process. However, he noted that barium
formate and ammonium titanyl citrate remain in solution many hours. The aqueous
solutions were spray dried into alcohol. In this process it was necessary to control (1) the
acidity of initial aqueous citrate solution, (2) the final water content of alcohol after
precipitation, (3) the type of alcohol used, and (4) the drying technique of powder.

MazdiyasniW) demonstrated a process for producing ZrQ, and BaTiO, by the simul-
taneous hydrolytic decomposition of metal organic alkoxide compounds of Zr(OC,H,,),,
Ba(OC;H,), and Ti(OC,H,,), in water. This general approach was then studied in more
detail at Sandia(® to produce PZ-PT from lead oxide, tetra N-butyl zirconate and tetra
N-butyl titanate. By further doping with lanthanum acetate, a lanthanum doped PLZT
was obtained which could be calcined and hot pressed into an optically transparent
ferroelectric material. This process was first used on a production basis at Honeywell.
Although the materials required are very expensive, it has been demonstrated that co-
precipitation of PZ-PT can be used in production.

The three approaches of trying to make complete PZ-PT batches by chemical solution
methods appeared to show promise; however, incomplete decomposition took place at
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lower temperature. At normal temperatures the calcined material reacted together so
thoroughly that grinding of this material was not considered practical. While these tech-
niques were not successful, the progress made appears to warrant consideration for a

e .

The effort on chemical solution approaches was limited to those where ZrO, and TiO,
were mixed as tetra N-butyl zirconate (TNBZ) or titanate (TNBT), calcined at 500°C
and then wet blended into the PZ-PT composition and processed by conventional
approaches. Table 15 compares the second and third groups of ZrO, materials prepared
for this portion of the program. The purity of the TNBZ was typical of that used in
production of PLZT ceramics as opposed to the impure TNBZ used previously.(l) 4
Table 16 gives the chemical uniformity of the PZ-PT produced from the coprecipitated H
Zr0,/TiO, produced. Batch Nos. 6643 and 6644 were formulated within the 53/47 ZrQ,/ i
TiO, material produced where the Ti0, was not compensated for in the batch. This was
also true in Batches 6641 and 6642. Batch Nos. 6646-6649 were properly made. Therefore,
the ZrQ, - TiO; in Nos. 6648 and 6649 were correctly formulated. X-ray fluorescence data
for each of these is given in Table 16.

Lfg larger more concentrated program on the chemical solution preparation of PZ-PT.
1
|
i

Note that the standard deviations obtained for each major oxide examined in these
batches using TNBZ derived ZrO, and TiO, was significantly lower than those samples
from a single batch of parts produced from ZrQO, as in Table 3. The Zr/Ti ratio obtained
was consistently lower (51/49 versus 53/47) than desired. Apparently, this was caused by
improper compensation for impurities in the ZrO,.

P Ngp e e v vt TIPS S

3 AW

Table 15 gives the percent loss on ignition, bulk density, particle size and surface area of
each Zr0,/TiO, combination prepared. These are also compared to the previously(l)
prepared TNBZ ZrO,. The average agglomerate size was about three microns, whereas
the surface varied between 26 to 56 M2?/gm. Bulk densities were about 1.0 gm/cc except
0.7 gm/cc for the 53/47 ZrO,/Ti0O, material.

Table 17 gives the properties of the PZ-PT batches processed from all of the various
chemically prepared ZrQ,/TiO, materials in this program. The high purity materials
produced PZ-PT with a fired density consistently above 7.54 gm/cc compared to 7.41 to
7.44 gm/cc for PZ-PT with the impure TNBZ ZrO, materials. Where 53/47 co-
precipitated ZrO,/TiO, was used, densities of 7.60 gm/cc were achieved—the highest
obtained in this program at the 1280°C firing temperatures. While the low Zr/Ti
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Table 15. Properties of TNBZ/TNBT derived ZrO,/TiO, powders.

ZrO,/Ti0, |We Percent TiOy | Percent | Bulk pverage | peersent. Surface
cal. No. Added Tenition ;;71E’ Diameter | Less than | 572
to &rO2 um 0.5 um M™ /em
2168 0 0.86 0.98 2.1 11 47
3177 0 1.00 1.10 3.8 26,
2169 0.02 0.99 0.94 2.0 54.0
2170 0.08 0.89 1.00 2.8 8 56,2
3178 0.10 1.06 1.04 4.8 3 31.0
2171 0.18 0.95 1.11 2.2 10 45.7
2172 0.36 1.00 1.03 2.6 6 53.2
3179 0.40 0.96 1.05 4.3 4 41,90
3180 36.50 9.92 0.76 3.0 1 40.0 |
3181 36.50 1.07 0.69 2.8 0 33.2 |
FH* 0 0.55 0.66 1.3 16 23.0 J

* Harshaw Calcinc Produced From Florida Zircon by Standard Process.

Table 16. Chemical uniformity of TNBZ/TNBT coprecipitated PZ-PT batches.

BER LRt Sadal T T O

30

r_Batch Amt. Percent Percent Percent Percent Zr/Ti i
No.  TiO, PbO 70, Ti0, Sro Ratio
6625 66.38  19.57  12.17 1.88  0.527/0.473
6640 66.21  19.69  12.23 1.87  0.510/0.490
6650 66.58  19.38  12.16 1.87  0.507/0.493
6641 0.1  66.24  19.64  12.24 1.88  0.510/0.490
6646 0.1  66.55  19.34  12.28 1.83  0.506/0.494
6642 0.4  66.43  19.51  12.22 1.84  0.507/0.493
6647 0.4 66.84  19.20  12.16 1.81  0.507/0.493
6648  53/47  66.70  19.38  12.12 1.80  0.508/0.492
6649  53/47  66.56  19.42  12.15 1.87  0.510/0.490

T x 66.48  19.48  12.19 1.85  0.510/0.490

B 0.17  0.13 __0.05 __ 0.03
6643 53/47  63.19  16.85  18.15 1.81  0.375/0.625
6644 53/47  62.49  15.40  20.32 1.79  0.325/0.675
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compositions produced inferior PZ-PT, the properties obtained are typical for the Zr/Ti
ratios in these compositions. The impact of a higher firing temperature, 1320°C, is also
shown to improve the piezoelectric behavior. Very excellent reproducibility was obtained
in Batch Nos. 6648 and 6649, which used the coprecipitated 53/47 Zr/Ti ratio. Therefore,
it can be concluded that chemical solution mixing approaches of the Zr and Ti will in
themselves lead to a greatly improved PZ-PT.
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IV. Summary and Conclusions

The chemical and physical properties of zirconium oxide have been shown to have a pro-
nounced influence on the piezoelectric properties obtained in lead zirconate-lead titan-
ate ceramics. Strongly bound agglomerated particles formed were about 10 to 15 um in
diameter and composed of 0.02 um ZrQ, crystallites. The standard alkali fusion process
produced such material after the first stage precipitate of the zirconium hydroxide was
calcined at about 900°C. The ZrO, produced at this stage also contained substantial
amounts of silica and calcia impurities. Normal micropulverization techniques of the
calcined ZrQO, material and wet ball milling mixing procedures used with the PZ-PT
batch did not disintegrate the ZrO, agglomerates sufficiently to produce a well distrib-
uted dispersion of ZrQ, in the TiO,, SrO and PbO. Thus, an effective method was not
obtained for producing PZ-PT from this partially processed ZrQ,.

When the first stage zirconia hydroxide was redissolved in hot hydrochloric acid and
reprecipitated with ammonium hydroxide, a second stage zirconium hydroxide material
was obtained; this was much lower in silica and calcia and could be calcined and micro-
nized to produce agglomerated particles 1 to 2 um in diameter. This second stage ma-
terial could be wet blended into a PZ-PT batch that produced good high drive piezo-
electric material. A procedure was established to perform the second stage precipitation
process, which produced ZrO, essentially comparable to that produced by Harshaw's
standard process. The second stage zirconium hydroxide, produced by Harshaw, was
also reprocessed with HCI/NH,OH reprecipitation process, but when the triple precipi-
tated zirconium hydroxide was calcined and micronized, no further improvement in the
Zr0Q, or PZ-PT was apparent.

The above results were essentially the same for ZrO, produced from three different
sources of zircon. However, the fineness of the zircon sand appeared to have some impact
on the ZrQ, produced from the first stage zirconium hydroxide precipitate. The finer,
purer Georgia zircon produced the best ZrQ, and PZ-PT ceramics. More complete solu-
tion ceramic mixing and coprecipitation were initially investigated. While these ap-
proaches appeared attractive, they were not developed to the stage where gnod PZ-PT
compositions were produced.

Coprecipitation of zirconium and titanium from their tetra N-butyl solutions was used
to produce a ZrO,/Ti0, mixture and PZ-PT with superior densities at low temperatures.
The purity of the ZrQ, and the exact Zr/Ti ratio of the PZ-PT materials produced had a
pronounced influence on the piezoelectric behavior of the ceramic obtained.
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